Category Archives: Electronics

  • process engineering

     

    Think about your company’s manufacturing operation.

    Now, think about fixing your adhesion problems simply by knowing a single number…

    …Read More

  • solving surface adhesion in tight areas

    What do both of these statements about surface adhesion have in common?

    [spacer height=”15px”]
    • “We need to measure surface quality of the teeth on a gear to make sure the coating stays on.”

     

    • “We need to make sure the coating on our tubing is uniform, but we can’t measure a curved surface with our current surface testing method.”
    [spacer height=”15px”]

    The answer?

    …Read More

  • Water break testing. Dyne pens. Goniometer. No method at all.

    The search for a reliable, repeatable, objective method (i.e. not based on opinion) for measuring surface readiness in manufacturing was a search all too common among our current customers, and these methods are the most commonly tried and (formerly) used among them.

    Achieving great adhesion in manufacturing comes down to surface preparation (we call it “Clean to a Number”) and optimal surface prep is the difference between an average product…and an industry-leading one.

    But getting there means having an objectively quantified understanding of the top 3 molecular layers of your material surface.

    Did we just say “top 3 molecular layers?”

    …Read More

  • surface cleanliness measuringPerforming any kind of inspection on small parts can be difficult. When measuring for surface cleanliness, accessing small parts can be even more challenging, especially when measuring on the factory floor.

    With the Surface Analyst, measuring surface cleanliness on small parts has never been easier. This handheld instrument is fast, easy, accurate, and non-subjective allowing for precise measurements, right on the factory floor.

    With specialized measurement heads and a tether to allow access to small parts, manufacturers can verify surface readiness to bond, paint, clean, coat, print, or seal. The Surface Analyst optimizes manufacturing, repairs, and maintenance. …Read More

  • BTG Lab’s recently held another successful webinar. Hosted by Products Finishing and presented by Dr. Giles Dillingham, the webinar emphasized the importance of monitoring cleaning processes and explored different ways to measure surface cleanliness.

    In the webinar, Dr. Dillingham discusses measuring surface cleanliness as a way to quantify cleaning processes. By measuring the success of cleaning processes, manufacturers can determine the ideal solution for their application.

    Precisely evaluating cleaning processes with water contact angle is a fast, easy, accurate, quantitative to way to gain ensure consistency and precision on the factory floor.

    …Read More

  • Challenges often arise when verifying critical surface processes on the factory floor when measuring hard to reach areas and varying angles. The Surface Analyst conquers those challenges with the unique ability to measure on vertical surfaces, which include assembled parts and hard to reach spots. This allows for easier surface analysis on the factory floor.

    This ability is possible because of patented Ballistic Deposition which deposits a pulsed stream of micro droplets with enough kinetic energy to overcome surface roughness and textures.

    A few examples of the Surface Analyst’s ability to measure on vertical surfaces on the factory floor:

    • Airplane wings prior to bonding, painting, and repair
    • Canopy of jet fighters after cleaning
    • Wind turbine blades prior to bonded repair
    • Silkscreen bottles post flame treatment
    • Ship hulls prior to painting and bonding
    • Interior of automobile headlights prior to application of anti-fog coating
    • Windshield bond lines prior to sealing
    • Class A paint surface for decals applications and reapplications
    • Measuring appliances after metal cleaning and prior to power coating

    …Read More

  • Plastics manufacturers are all too familiar with the challenges of bonding thermoplastics. Last week, BTG Labs successfully hosted a webinar with Plastics Technology to discuss improving bonding of thermoplastics. The webinar, entitled “Understanding Surface Energy: How to Measure and Control the Surface Properties of Thermoplastics to Maximize Adhesion,” brought in almost 400 registrants.

    Presented byBTG Labs’ Chief Scientist Dr. Giles Dillingham who discussed the surface characteristics of thermoplastics. Dr. Dillingham also explored surface treatment processes such as flame, corona, and plasma, and ways to monitor and verify those processes. The ability to understand and measure the surface precisely is the key to successfully bonding thermoplastics.

    This table shows the relationship between low surface energy and relative interfacial toughness. While thermoplastics are highly durable, they cause difficulties in bonding because of their low surface energy.

    …Read More

  • Manufacturers are all too familiar with the challenges of getting a bond to stick and hold. The success of a bond relies on the surface created prior to that bond, so, monitoring and measuring surface processes is the only way to know that the surface is ready to bond reliably.

    BTG Labs’ President Tom McLean and Sales Engineer Lucas Dillingham presented during Plasmatreat’s Open House on the 4 Surface Fundamentals for Successful Bonding in Manufacturing. They presented to industry leaders who can easily relate to bonding and cleaning issues. The presentation was such a success that BTG Labs decided to turn it into a webinar.

    Challenges with establishing a strong, reliable bond, when painting, coating, sealing, or printing are tied into the surface preparation process and the ability to monitor that process. This presentation focuses on the bond surface and what it takes to bond properly to that surface. There is also a comparison of various cleaning methods using contact angles taken with the Surface Analyst.

    While other monitoring processes such as dyne and water break fail to provide quantitative insight, monitoring cleaning processes with the precise and quantitative Surface Analyst tells the user, objectively, whether the surface is properly prepared to hold a reliable bond. …Read More

  • Metal Performance Surface Analyst Inspection on Engine Casing

    Manufacturers working with metal and worrying about metal performance are all too familiar with the obstacles that come along with coating, painting, bonding, printing, or sealing it. While the uses of metal in manufacturing are countless and exist in numerous industries, the common denominator is ensuring the appropriate surface cleanliness prior to surface critical processes to guarantee successful adhesion. Common surface cleanliness gauges—dyne inks and water break—are subjective and do not offer quantitative results. Water break can be messy and time consuming and dyne is destructive to the part and dangerous to the user. While these methods can offer some insight into surface cleanliness, they are less than ideal.

    BTG Labs Surface Analyst is a fast, easy, accurate, and non-destructive surface cleanliness gauge that tells the user right on the manufacturing floor how prepared the surface is to bond. This hand-held instrument improves surface processes and guarantees a bond will stick. Numerous manufacturers in industries such as consumer goods, automotive, and aerospace, have implemented the Surface Analyst in their specifications to improve their critical metal surface processes. …Read More

  • water break test for surface cleanlinessThe water break test is a common way to test for surface cleanliness. It allows the user to test for the presence of hydrophobic contaminants, which can be detrimental to adhesion. It is usually considered non-destructive to the part because it uses only water.

     

    To perform a water break test in accordance with the ASTM-F22 Handbook, the material is dipped in water and withdrawn vertically. The behavior of that water on the surface reveals the surface energy which is determined by the cleanliness level. If the surface is clean it will show high surface energy and the water will spread out due to its attraction to the surface. This strongly correlates to adhesion ability.

     

    Water break is mostly used on metals to expose the presence of contaminants or after surface processes such as etching, anodizing, painting, priming, coating, grit-blasting, or sanding. However, these tests can be messy and sometimes can result in unintended contaminating due to impure water. The user must also allot a significant amount of time for the part to dry after the test. These tests require a trained user who can determine a “go” or “no go” result. This leads to subjectivity. Lastly, the test can lack sensitivity as a surface can visually appear clean, when it’s not.

     

    In contrast, the Surface Analyst™  is sensitive to the top 2-3 molecular layers of a surface. By using a single drop of highly purified water, there is virtually no mess and no threat to the measurement surface. Furthermore, it’s a small, handheld, user friendly instrument, that has the ability to measure on almost any surface or surface orientation, regardless of shape or roughness. The automatic calculation of contact angle removes operator subjectivity. The Surface Analyst measures on a cleanliness scale as opposed to a binary go/no go result. So measurements taken with the Surface Analyst can more closely map out a surface’s characteristics.