Tag Archives: automotive manufacturing

  • Thanks to advancements in powertrain manufacturing, sealing processes have improved assembly efficiency. Formed-in-place gaskets (FIPG) are replacing traditional mechanical fasteners as they are more cost effective, stronger, and easier to apply. However, adhesive bonding rather than mechanically fastening presents different challenges and requires new protocols.

    Lead Sales Engineer Lucas Dillingham has presented “Defining Cleanliness in Powertrain Manufacturing for FIPG Applications,” at several events and automotive factories. BTG Labs works with numerous automotive manufacturers on surface chemical cleanliness and what it means for assembly.

    Traditional millipore tests reveal particulate contamination, but on a sealing surface, one must detect chemical contamination. To adhere successfully, surface cleanliness on a chemical level is vital.

    A byproduct of automotive manufacturing processes is contaminants that are detrimental to adhesion. Processes entailing unwanted contaminants include:

    • Die-casting
    • Machining
    • Washing
    • Assembly

    …Read More

  • Building a More Fuel-Efficient Automobile


    The pursuit to produce a more fuel-efficient automobile does not rely solely on the efficiency of the engine. A great amount of fuel efficiency gains are possible not because of improvements to engine design, but because of improvements in materials. This is an obvious thing to say, but by creating a lighter body, an engine does not require as much energy to move a vehicle forward. Car manufacturers have looked to the aerospace industry for inspiration, and much like modern fighter jets, have settled on the use of composite materials in car frames and interiors to reduce weight.

    Poznan, Poland - April 9th, 2015: Presentation of car body construction from BMW i8 on the Motor Show Poznan (in Poznan International Fair). The car body of this vehicle is constructed with carbon fiber, aluminium and special plastic. That's why the BMW i8 is very light in compare with rivals.

    BMW i8 with a body constructed with carbon fiber composite, aluminium and special plastic.

    As the use of composite materials continues to grow– and even become integrated into more critical parts such as automobile frames–the issue of safety becomes more important. Due to the structure of composite materials, mechanical fasteners sacrifice compatibility. The strength of composite materials dwindles when fibers break due to holes used for fasteners. Rather than using mechanical fasteners, adhesives replace fasteners to bond these composite materials to the frame. These bonds are strong enough to withstand the stresses of a wreck. This allows composite material utilization on critical components of the car frame. That is, of course, assuming the strength of the bond remains consistent – and that is where matters become complicated.

    …Read More